
Critical Software
Software Verification

Barbara Guttman
September 14, 2021

Executive Order 14028, Section 4
Critical Software

2
July 16, 2020

• (g) Within 45 days of the date of this order, the Secretary of Commerce, acting
through the Director of NIST, in consultation with the Secretary of Defense acting
through the Director of the NSA, the Secretary of Homeland Security acting through
the Director of CISA, the Director of OMB, and the Director of National Intelligence,
shall publish a definition of the term “critical software” for inclusion in the guidance
issued pursuant to subsection (e) of this section. That definition shall reflect the level
of privilege or access required to function, integration and dependencies with other
software, direct access to networking and computing resources, performance of a
function critical to trust, and potential for harm if compromised.

Strategy

• Given the complexity of the software marketplace and the potential
impact of this program, we (NIST, CISA & OMB) took a phased
approach.

• What this means is that we will start with a subset of all possible
software that could be considered critical and then build on it

• Advantages:
• Learn what works and what doesn’t and improve as we go along
• Allow time for coordination with other programs

What does this look like?

• So, this means we will have both a definition AND an initial phase

• We also have a table that lists the categories of software

• Lastly, we have some FAQs to answer what we think will be common
questions.

Definition

• We decided on a definition that will be static across the phases.
• Here is the definition:

EO-critical software is defined as any software that has, or has direct software
dependencies upon, one or more components with at least one of these
attributes:
• is designed to run with elevated privilege or manage privileges;
• has direct or privileged access to networking or computing resources;
• is designed to control access to data or operational technology;
• performs a function critical to trust; or,
• operates outside of normal trust boundaries with privileged access.

applewebdata://F4C37A3E-3A1E-4197-ABBB-E622BD49CD7A/#Ref_FAQ2

Phases

• Initial phase:
• standalone, on-premises software that has security-critical functions

or poses similar significant potentials for harm if compromised.
• Subsequent phases may address other categories of software such as

those that control access to data; cloud-based and hybrid software;
software development tools such as development tools, testing
software, code repository systems, integration software, packaging
software, and deployment software; software components in boot-
level firmware; and software components in operational technology
(OT).

• ICAM
• Operating systems, hypervisors,

container environments
• Web browsers
• Endpoint security
• Network control
• Network protection
• Network monitoring and

configuration
• Operational monitoring and

analysis
• Remote scanning
• Remote access and configuration

management
• Backup/recovery and remote

storage

Initial List of Categories of EO-Critical Software

7
July 16, 2020

Network control Software that implements
protocols, algorithms, and
functions to configure, control,
monitor, and secure the flow of
data across a network

• Routing protocols
• DNS resolvers and servers
• Software-defined network

control protocols
• Virtual private network

(VPN) software
• Host configuration

protocols

• Privileged access to critical
network control functions

• Often subverted by malware
as the first step in more
sophisticated attacks to
exfiltrate data

Operating systems,
hypervisors, container
environments

Software that establishes or
manages access and control of
hardware resources (bare metal
or virtualized/ containerized)
and provides common services
such as access control, memory
management, and runtime
execution environments to
software applications and/or
interactive users

• Operating systems for
servers, desktops, and
mobile devices

• Hypervisors and container
runtime systems that
support virtualized
execution of operating
systems and similar
environments

• Highly privileged software
with direct access and
control of underlying
hardware resources and
that provides the most
basic and critical trust and
security functions

Identity, credential,
and access
management (ICAM)

Software that centrally
identifies, authenticates,
manages access rights for, or
enforces access decisions for
organizational users, systems,
and devices

• Identity management
systems

• Identity provider and
federation services

• Certificate issuers
• Access brokers
• Privileged access

management software
• Public key infrastructure

• Foundational for ensuring
that only authorized users,
systems, and devices can
obtain access to sensitive
information and functions

Network monitoring
and configuration

Network-based monitoring and
management software with the
ability to change the state of, or
with installed agents or special
privileges on, a wide range of
systems

• Network management
systems

• Network configuration
management tools

• Network traffic monitoring
systems

• Capable of monitoring
and/or configuring
enterprise IT systems using
elevated privileges and/or
remote installed agents

Web browsers Software that processes content delivered by
web servers over a network, and is often used as
the user interface to device and service
configuration functions

• Standalone and embedded browsers

Remote access and configuration
management

Software for remote system administration and
configuration of endpoints or remote control of
other systems

• Policy management
• Update/patch management
• Application configuration management

systems
• Remote access/ sharing software
• Asset discovery and inventory systems
• Mobile device management systems

Remote scanning Software that determines the state
of endpoints on a network by
performing network scanning of
exposed services

• Vulnerability detection and
management software

• Typically has privileged access
to network services and
collects sensitive information
about the vulnerabilities of
other systems

Endpoint security Software installed on an endpoint,
usually with elevated privileges
which enable or contribute to the
secure operation of the endpoint or
enable the detailed collection of
information about the endpoint

• Full disk encryption
• Password managers
• Software that searches for,

removes, or quarantines
malicious software

• Software that reports the
security state of the endpoint
(vulnerabilities and
configurations)

• Software that collects
detailed information about
the state of the firmware,
operating system,
applications, user and service
accounts, and runtime
environment

• Has privileged access to data,
security information, and
services to enable deep
inspection of both user and
system data

• Provides functions critical to
trust

Backup/recovery and
remote storage

Software deployed to create
copies and transfer data stored
on endpoints or other
networked devices

• Backup service systems
• Recovery managers
• Network-attached

storage (NAS) and
storage area network
(SAN) software

• Privileged access to user
and system data

• Essential for performing
response and recovery
functions after a cyber
incident (e.g.,
ransomware)

Operational
monitoring and
analysis

Software deployed to report
operational status and security
information about remote
systems and the software used
to process, analyze, and
respond to that information

• Security information and
event management
(SIEM) systems

• Software agents typically
widely deployed with
elevated privilege on
remote systems

• Analysis systems critical to
incident detection and
response and to forensic
root cause analysis of
security events

• Often targeted by malware
trying to deactivate or
evade it

Network protection Products that prevent malicious
network traffic from entering or
leaving a network segment or
system boundary

• Firewalls, intrusion
detection/ avoidance
systems

• Network-based policy
enforcement points

• Application firewalls and
inspection systems

• Provides a function critical
to trust, often with
elevated privileges

Executive Order 14028, Section 4
Software Verification
“Section 4(r) Within 60 days of the date of this order, the Secretary of
Commerce acting through the Director of NIST, in consultation with the
Secretary of Defense acting through the Director of the NSA, shall
publish guidelines recommending minimum standards for vendors’
testing of their software source code, including identifying
recommended types of manual or automated testing (such as code
review tools, static and dynamic analysis, software composition tools,
and penetration testing).”

Software Verification

• Applicable to all software development
• In house
• Off the shelf

• Stand alone section of the EO

Approach

• Minimum standards recommended for verification by software
vendors or developers.

• No single verification standard can encompass all types of software
testing, be specific and prescriptive, and present efficient and
effective testing.

• Expands on NIST’s Secure Software Development Framework (SSDF)
practices

• Full document at the NIST EO Website - Guidelines on Minimum
Standards for Developer Verification of Software

https://nvlpubs.nist.gov/nistpubs/CSWP/NIST.CSWP.04232020.pdf
https://www.nist.gov/system/files/documents/2021/07/13/Developer%20Verification%20of%20Software.pdf

Structure

• 11 recommended minimums (+ fixing bugs!)
• Background and supplemental information about each technique

• References for each technique

• Beyond software verification
• Software development
• Installation and operation
• Additional software assurance techniques

Technique Class Technique Description & Reference to
Recommended Minimums
Document

Threat modeling Threat modeling helps identify key
or potentially overlooked testing
targets.

Section 2.1. Threat modeling
methods create an abstraction of
the system, profiles of potential
attackers and their goals and
methods, and a catalog of potential
threats. Threat modeling can
identify design-level security issues
and help focus verification.

Automated testing As testing is automated, it can be
repeated often, for instance upon
every commit or before an issue is
retired.

Section 2.2. Automated testing can
run tests consistently, check results
accurately, and minimize the need
for human effort and expertise.
Automated testing can be integrated
into the existing workflow or issue
tracking system.

Technique Class Technique Description & Reference to
Recommended Minimums
Document

Code-based (static) analysis Use a code scanner to look for top
bugs.

Section 2.3. Static analysis tools can
check code for many kinds of
vulnerabilities and for compliance
with the organization’s coding
standards. For multi-threaded or
parallel processing software, use a
scanner capable of detecting race
conditions.

Review for hardcoded secrets. Section 2.4. Heuristic tools can be
somewhat effective checking for
hardcoded passwords and private
encryption keys since functions or
services taking these as parameters
have specific interfaces.

Dynamic analysis
(i.e., run the
program on test
cases)

Run with built-in checks and protections. Section 2.5. Programming languages, both compiled and
interpreted, provide many built-in checks and
protections.

Create “black box” test cases. Section 2.6. “Black box” tests can address functional
specifications or requirements, negative tests (invalid
inputs and testing what the software should not do),
denial of service and overload attempts, input boundary
analysis, and input combinations.

Create code-based structural test cases. Section 2.7. Code-based, or structural, test cases are
based on the implementation, that is, the specifics of the
code. Code-based test cases may also come from
coverage metrics.

Use test cases created to catch previous bugs. Section 2.8. Test cases which have been created to
specifically show the presence (and later, the absence) of
a bug can be used to identify issues in the absence of
more general “first principles” assurance approaches for
detecting bugs.

Run a fuzzer. Section 2.9. Fuzzers can try an immense number of
inputs with minimal human supervision. The tools can be
programmed with inputs that often reveal bugs, such as
very long or empty inputs and special characters.

If the software might be connected to the
Internet, run a web app scanner.

Section 2.10. If there is a network interface, use a
dynamic security testing tool (e.g., web application
scanner) to detect vulnerabilities.

Technique Class Technique Description & Reference to
Recommended Minimums
Document

Check included software Use similar techniques to gain
assurance that included libraries,
packages, services, etc. are no less
secure than your code.

Section 2.11. Use the verification
techniques recommended in this
section to gain assurance that
included code is at least as secure as
code developed locally. The
components of your software must
be continually monitored against
databases of known vulnerabilities; a
new vulnerability in existing code
may be reported at any time.

Fix bugs Fix critical bugs that are uncovered. Correct critical bugs as soon as
possible and make process
improvements necessary to prevent
such bugs in the future, or to at least
catch them earlier in the
development process.

Questions?

	Critical Software�Software Verification
	Executive Order 14028, Section 4�Critical Software
	Strategy
	What does this look like?
	Definition
	Phases
	Initial List of Categories of EO-Critical Software
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Executive Order 14028, Section 4�Software Verification
	Software Verification
	Approach
	Structure
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Questions?

